skip to main content


Search for: All records

Creators/Authors contains: "Velingker, Ameya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leonardi, Stefano ; Gupta, Anupam (Ed.)
    We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on n variables taking values in {0,…,q−1}, we prove that improving over the trivial approximability by a factor of q requires Ω(n) space even on instances with O(n) constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires Ω(n) space. The key technical core is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q problem, which is the Max CSP problem where every constraint is given by a system of k−1 linear equations mod q over k variables. Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the MaxCut problem in graphs. MaxCut corresponds roughly to the case of Max k-LIN-mod q with k=q=2. For general CSPs in the streaming setting, prior results only yielded Ω(√n) space bounds. In particular no linear space lower bound was known for an approximation factor less than 1/2 for any CSP. Extending the work of Kapralov and Krachun to Max k-LIN-mod q to k>2 and q>2 (while getting optimal hardness results) is the main technical contribution of this work. Each one of these extensions provides non-trivial technical challenges that we overcome in this work. 
    more » « less
  2. We study the communication rate of coding schemes for interactive communication that transform any two-party interactive protocol into a protocol that is robust to noise. Recently, Haeupler [11] showed that if an ∊ > 0 fraction of transmissions are corrupted, adversarially or randomly, then it is possible to achieve a communication rate of Furthermore, Haeupler conjectured that this rate is optimal for general input protocols. This stands in contrast to the classical setting of one-way communication in which error-correcting codes are known to achieve an optimal communication rate of 1 In this work, we show that the quadratically smaller rate loss of the one-way setting can also be achieved in interactive coding schemes for a very natural class of input protocols. We introduce the notion of average message length, or the average number of bits a party sends before receiving a reply, as a natural parameter for measuring the level of interactivity in a protocol. Moreover, we show that any protocol with average message length ℓ = Ω(poly(1/∊)) can be simulated by a protocol with optimal communication rate 1 - Θ(Η(∊)) over an oblivious adversarial channel with error fraction e. Furthermore, under the additional assumption of access to public shared randomness, the optimal communication rate is achieved ratelessly, i.e., the communication rate adapts automatically to the actual error rate e without having to specify it in advance. This shows that the capacity gap between one-way and interactive communication can be bridged even for very small (constant in e) average message lengths, which are likely to be found in many applications. 
    more » « less